Differential Effects of HOXB4 on Nonhuman Primate Short- and Long-Term Repopulating Cells
نویسندگان
چکیده
BACKGROUND Hematopoietic stem cells (HSCs) or repopulating cells are able to self-renew and differentiate into cells of all hematopoietic lineages, and they can be enriched using the CD34 cell surface marker. Because of this unique property, HSCs have been used for HSC transplantation and gene therapy applications. However, the inability to expand HSCs has been a significant limitation for clinical applications. Here we examine, in a clinically relevant nonhuman primate model, the ability of HOXB4 to expand HSCs to potentially overcome this limitation. METHODS AND FINDINGS Using a competitive repopulation assay, we directly compared in six animals engraftment of HOXB4GFP (HOXB4 green fluorescent protein) and control (yellow fluorescent protein [YFP])-transduced and expanded CD34+ cells. In three animals, cells were infused after a 3-d transduction culture, while in three other animals cells were infused after an additional 6-9 d of ex vivo expansion. We demonstrate that HOXB4 overexpression resulted in superior engraftment in all animals. The most dramatic effect of HOXB4 was observed early after transplantation, resulting in an up to 56-fold higher engraftment compared to the control cells. At 6 mo after transplantation, the proportion of marker gene-expressing cells in peripheral blood was still up to 5-fold higher for HOXB4GFP compared to YFP-transduced cells. CONCLUSIONS These data demonstrate that HOXB4 overexpression in CD34+ cells has a dramatic effect on expansion and engraftment of short-term repopulating cells and a significant, but less pronounced, effect on long-term repopulating cells. These data should have important implications for the expansion and transplantation of HSCs, in particular for cord blood transplantations where often only suboptimal numbers of HSCs are available.
منابع مشابه
Dynamic HoxB4-regulatory network during embryonic stem cell differentiation to hematopoietic cells.
Efficient in vitro generation of hematopoietic stem cells (HSCs) from embryonic stem cells (ESCs) holds great promise for cell-based therapies to treat hematologic diseases. To date, HoxB4 remains the most effective transcription factor (TF) the overexpression of which in ESCs confers long-term repopulating ability to ESC-derived HSCs. Despite its importance, the components and dynamics of the ...
متن کاملHigh incidence of leukemia in large animals after stem cell gene therapy with a HOXB4-expressing retroviral vector.
Retroviral vector-mediated HSC gene therapy has been used to treat individuals with a number of life-threatening diseases. However, some patients with SCID-X1 developed retroviral vector-mediated leukemia after treatment. The selective growth advantage of gene-modified cells in patients with SCID-X1 suggests that the transgene may have played a role in leukemogenesis. Here we report that 2 of 2...
متن کاملتأثیر بخش خدمات بر شکلگیری پدیده نخستشهری در استان خوزستان
In the literature of urban economics, primate city is a phenomenon that a very large city is formed among small cities in urban system of a region that a major part of population and its economic activities of that region is concentrated in it. According to urban economics theories, GFP is one of the factors that can be influential in forming a primate city phenomenon. Given service sector in t...
متن کاملHematopoietic stem cell tracking in vivo: a comparison of short-term and long-term repopulating cells.
We have previously demonstrated that we could separate long-term repopulating stem cells from cells that provided radioprotection (short-term repopulating cells) on the basis of size and suggested that this might be due to the quiescent nature of long-term repopulating cells. To further define the activity of these populations, we used a dye (PKH26), which incorporates into the membrane of cell...
متن کاملStem cell factor enhances the survival but not the self-renewal of murine hematopoietic long-term repopulating cells.
The effects of stem cell factor (SCF) have been tested on a murine bone marrow subpopulation (RH123lo, Lin-, Ly6A/E+) that is highly enriched for long-term hematopoietic repopulating cells. SCF maintained cells from this population with long-term repopulating ability for up to 10 days in vitro. However, compared with freshly isolated cells, the level of engraftment in vivo by the cultured cells...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Medicine
دوره 3 شماره
صفحات -
تاریخ انتشار 2006